VIAVI

3550R TETRA Base Station Operation

3550R TETRA Base Station Test

- The 3550R TETRA Base Station Test option utilizes the ETSI standard defined TETRA T1 test mode.
 - ETSI is the European Telecommunications Standards Institute
 - The ETSI document is ETSI EN 300 394-1 V3.2.1 (2012-10)
 - The TETRA T1 Test Modes for Base Stations are defined in section 5.2
 - Test Receive Mode (5.2.1.2) and Test Transmit Mode (5.2.2.3)
 - Test signal T1 for base station testing is defined in section 5.3.2
 - TETRA phase modulated (pi/4 DQPSK) signal with pseudo-random data
 - Used to perform receiver testing on TETRA Base Stations

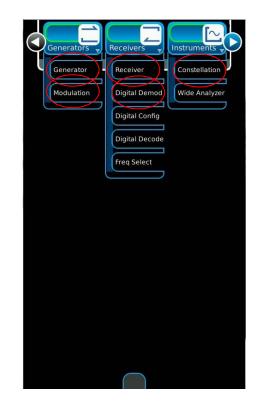
Setting up the 3550R for TETRA

www.viavisolutions.com

© 2017 Viavi Solutions Inc. 3

VIAVI

Selecting the TETRA BS (Base Station) Mode


- Select TETRA BS Mode from the main System menu
 - Display the main System Menu by pressing the button located just below the display.
 - Touch the "Configuration" entry, and then select "TETRA BS"
 - This will switch the system to TETRA BS (system will re-boot)

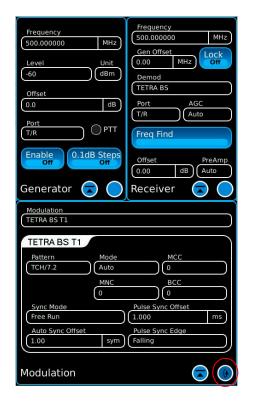
Example of setting up the screen for TETRA BS Testing

- The Diagram, shown to the right, is a partially exploded view of the menu structure of the 3550R.
 - The red ellipses indicate the TETRA windows that are selected for the example TETRA BS test setup.

www.viavisolutions.com

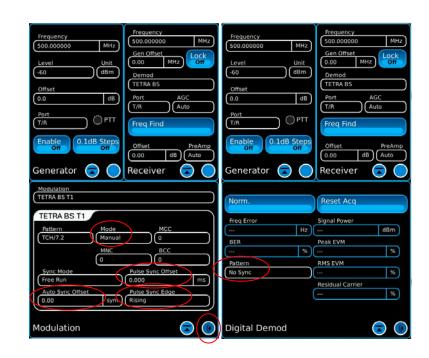
© 2017 Viavi Solutions Inc. 5

Example TETRA BS Setup


- After selecting these windows, position them as shown in the diagram to the right.
- The Modulation and Constellation windows are behind the Digital Demod window
- The windows with the blue circles can be expanded.
 - Expanding the windows shows additional fields that are hidden when the windows are small.

			-	
Frequency 500.000000		Port T/R	Frequency 500.000000	MHz T/P
		\equiv		
	dBm	Enable Off	TETRA BS	
Generator		\bigcirc	Receiver	
N			Deset Ass	
Norm.			Reset Acq	
<u></u>				
Norm. Freq Error		Hz	Reset Acq Signal Power	dBm
		Hz		dBm
Freq Error		Hz (Signal Power	dBm %
Freq Error BER			Signal Power Peak EVM	
Freq Error BER 			Signal Power Peak EVM 	
Freq Error BER Pattern			Signal Power Peak EVM 	%
Freq Error BER Pattern			Signal Power Peak EVM RMS EVM 	%
Freq Error BER Pattern			Signal Power Peak EVM RMS EVM Residual Carrie	% 9% 9r
Freq Error BER Pattern			Signal Power Peak EVM RMS EVM Residual Carrie	% 9% 9r

Example TETRA BS Setup with expanded windows


- The diagram to the right shows the TETRA BS setup with windows expanded to show the extra fields.
- By touching the "Fast Stack" button, the Modulation window can be brought to the front.
- These field values are the default parameters.
 - To select default parameters:
 - Press the button just below the display
 - Select "Sys Reset"

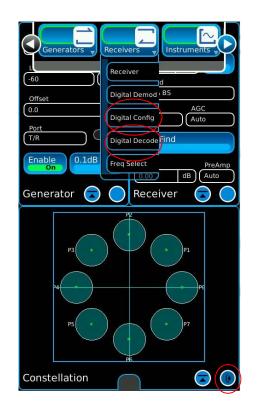
TETRA BS Setup

- Setup TETRA to match the screens to the right.
 - Modulation window changes:
 - Mode: Manual
 - Pulse Sync Offset: 0
 - Auto Sync Offset: 0
 - Pulse Sync Edge: Rising
 - Digital Demod window changes:
 - Touch the "Fast Stack" button to switch to the Digital Demod window
 - Pattern: No Sync

TETRA BS Loopback operation

- Setup for loopback mode operation
 - Enable the Generator
 - Touch "Reset Acq"
- The operation should match the display in the screens to the right.
 - Press the "Fast Stack" button to toggle from the Digital Demod window to the Constellation window.

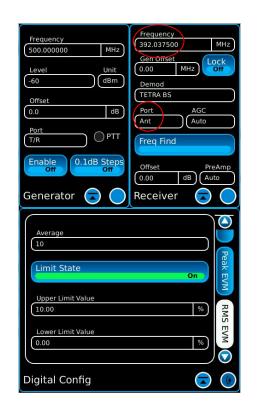
TETRA Over-The-Air Testing


VIAVI

www.viavisolutions.com

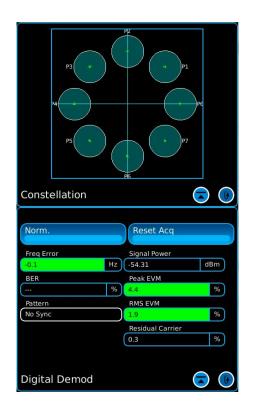
© 2017 Viavi Solutions Inc. 10

Setting up for TETRA BS OTA (Over-The-Air) Testing


- Select two additional screens for performing OTA transmitter testing
 - From the Receivers drop down menu, select Digital Decode and Digital Config
- Move both of these new windows to the lower half.
 - The "fast stack" button can be used to move through the windows.

VIAVI

TETRA BS OTA Testing


- In the Receiver window:
 - Enter the frequency of the TETRA Base Station transmitter
 - Select the Ant Port if testing a live base station OTA (Over-The-Air).
- In the Digital Config window, select Upper and Lower Limit Values for each parameter.
 - Turn "Limit State" On and the measurement field will indicate pass or fail (green/red indication).

TETRA BS OTA Measurements

- The Digital Demod indicates if the measurements pass by highlighting them in green.
 - If the measurement is too high, then it is highlighted in red.
 - If the measurement is too low, then it is highlighted in blue.
 - Only applies to "Freq Error" in this scenario since the other 3 parameters on the screen can only fail if they are too high.
- The Constellation window should be moved to the upper half.

TETRA BS Digital Decode

- This screen to the right shows a 3550R setup to decode the base station identity parameters.
 - The base station identity parameters consist of:
 - Mobile Country Code (MCC)
 - Mobile Network Code (MNC)
 - Base Color Code (BCC)
 - Set the Pattern to "Training Sequence 1" or "Training Sequence 2".

Demod		
TETRA BS		
мсс		
310		
MNC		
6686		
BCC		
1		
District Description		
Digital Decode		
Norm.	Reset A	ca
	iteset /	
Freq Error	Signal Pow	ver
3.6	Hz -42.44	dBm
BER	Peak EVM	
50.0	% 4.4	%
Pattern	RMS EVM	
Training Sequence 1	1.7	%
Training Sequence 1	1.7 Residual C	
Training Sequence 1		
Training Sequence 1	Residual C	arrier
Digital Demod	Residual C	arrier

TETRA Testing Using T1 Mode

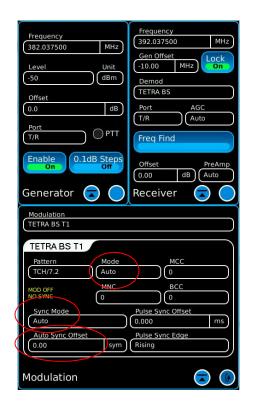
VIAVI

www.viavisolutions.com

© 2017 Viavi Solutions Inc. 15

Testing TETRA Base Stations in T1 Test Mode

- The 3550R supports comprehensive testing of base stations by utilizing the TETRA T1 test mode.
- This test mode enables quick and easy testing of both the transmitter and the receiver.
- Although this test mode is defined in the TETRA standard, it leaves some implementation details to the manufactures of the base stations.
- Details on how the manufacture implements test modes are available from the manufacture.
- The 3550R supports all manufacture methods of implementation.

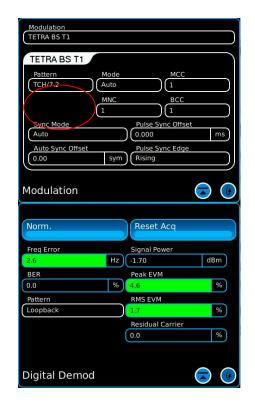


TETRA T1 Test Modes

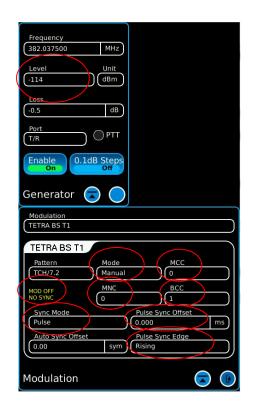
- The method for making receiver measurements vary by manufacture.
- There are basically two different methods of making receiver measurements.
 - These different methods are based on the mechanism that the test instrument employs to synchronize with the TETRA base station.
 - On the 3550R, these two methods are called:
 - Auto Synchronization Mode
 - Pulse Synchronization Mode

TETRA Receiver Testing in Auto Sync Mode

- The diagram to the right illustrates the fields that should be setup for performing receiver testing in Auto Sync Mode.
 - The fields outlined in red must be selected.
 - The "Mode" field should be set to "Auto" so that the 3550R uses the MCC, MNC, and BCC values received from the base station.
 - "Auto Sync Offset" value should be set according to the manufacture.


TETRA Receiver Testing in Auto Sync Mode

- Other fields to setup:
 - Set the "Pattern" field, in the Digital Demod window, to "Loopback".
 - Some base stations may loopback the data into the transmit path.
 - The "Gen Offset" field may be used to lock an offset, for example of 10 MHz, between the receiver and generator frequency.


TETRA Receiver Testing in Auto Sync Mode

- When the 3550R begins to receive the signal from the base station:
 - The "MOD OFF / NO SYNC" goes away (if 3550R Generator is enabled).
 - The 3550R transmits the TCH/7.2 pattern, synchronized to the BS.
 - If the base station loops the data back, the BER field can be used to measure the BER of the BS.
 - Alternatively, the BS reports the BER via the manufacture defined method.

TETRA Receiver Testing in Pulse Sync Mode

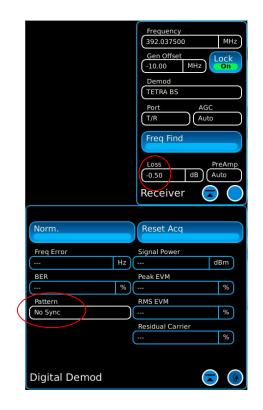
- This mode of receiver testing uses a pulse trigger from the base station for synchronization.
 - The Mode selection should be set to "Manual"
 - Set MCC, MNC, and BCC according to the manufacture.
 - Set Sync Mode to "Pulse"
 - Set Pulse Sync Offset according to the manufacture. It is often "0 ms"
 - Set Pulse Sync Edge to "Rising"

© 2017 Viavi Solutions Inc. 21

TETRA Receiver Testing in Pulse Sync Mode

- Connect a cable from the trigger out of the base station to the BNC trigger input adapter of the 3550R.
 - If the Generator is Enabled, the "MOD OFF / NO SYNC" indication in the Modulation tile will go away.
- The 3550R should now be transmitting.
 - Adjust the Generate level to find the sensitivity of the BS.

Note: Generator must be enabled for the 3550R to transmit.


-	
Frequency 382.037500 MHz	
302.037300	
Level Unit	
(-114 (dBm)	
Loss	
-0.5 dB	
Port	
T/R OPTT	
Enable 0.1dB Steps	
Generator 🗟 🔵	
Modulation	
TETRA BS T1	
TETRA BS T1	
Pattern Mode	мсс
TCH/7.2 Manual	
млс	BCC
0	
Sync Mode	Pulse Sync Offset
Pulse	0.000 ms
Auto Sync Offset	Pulse Sync Edge
(0.00 sym)	Rising
Modulation	

VIAVI

© 2017 Viavi Solutions Inc. 22

TETRA BS Transmitter Setup in T1 Test Mode

- A typical screen configuration for testing a TETRA transmitter is shown to the right.
 - The Receiver window is expanded to show all of the fields.
 - Set the Loss field with the cable loss value. Should be a negative value.
 - The Pattern field should be set to "No Sync".

TETRA BS Transmitter Testing in T1 Test Mode

- Enable the transmitter of the base station with a T1 signal.
 - The procedure to enable the transmitter is manufacture dependent.
- Verify the measurements meet the specification of the BS manufacture and the TETRA standard.

VIAVI

TETRA Standard for Base Stations

- The TETRA standard specifies the following limits under normal conditions:
 - Transmitter
 - Peak EVM: < 30%
 - RMS EVM: < 10%
 - Residual Carrier < 5%
 - Freq Error
 - ≤ ±0.2 ppm (≤ 520 MHz) (± 78 Hz at 390 MHz)
 - ≤ ±0.1 ppm (> 520 MHz) (± 80 Hz at 800 MHz)
 - Signal power $\leq \pm 2.0$ dB of nominal value specified for the BS
 - Receiver
 - Static reference sensitivity: -115 dBm

www.viavisolutions.com

© 2017 Viavi Solutions Inc. 25

